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Modeling the aggregation of partially covered particles: Theory and simulation
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A theoretical model for describing the initial stages of the aggregation of partially covered colloidal particles
is presented. It is based on the assumption of short-range interactions that may be modeled by a sticking
probability on contact. Three types of sticking probabilities are distinguished depending on the collision type,
i.e., for bare-bare, bare-covered, and covered-covered collisions. Hence, the model allows an analytical ex-
pression for the dimer-formation rate consténi, to be deduced as a function of the degree of surface
coverage and the three sticking probabilities. The theoretical predictions are contrasted with simulated data.
The observed agreement between theory and simulations shows the usefulness of the model for predicting the
initial stages of this kind of aggregation processes.
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[. INTRODUCTION for explaining their flocculation kinetics. In this work we
attempt to fill this gap proposing a model based on La Mer’s
Macromolecules adsorbed onto colloidal particle surfaceddea of a surface coverage dependent aggregation rate ca-
may either stabilize or destabilize the dispersions. Thigable of describing the initial stages of an aggregation pro-
makes the employment of macromolecules as additives fogess. Additionally, the concepts of sticking probability and
suspensions a much extended practice for industrial puiconsecutive collisions recently employed for modeling the
poses. Several app”cations can be found in mineral anHanSition from diffusion to reaction limited cluster aggrega-
waste water treatments, such as water treatments for hum&gn are also include@19,20. The obtained results are then
consumption, paper industry, drilling fluids, ceramics, agro-compared with Brownian dynamics simulations.
chemical formulation, and in immunoassay diagnostic test The paper is organized as follows. Section Il reports the
design[l]_ However, such processes are so h|gh|y Comp|e)€he0ret|ca| background. Section Il bneﬂy describes the
in nature that they have not been completely understood, yegimulations, presents some simulation results, and confirms
Given any particular situation where macromolecules andhat the models found in the literature are not capable of
colloidal particles are taking part, the process will depend ornatching the data. In Sec. IV an alternative model is pro-
the degree of surface coverage with macromolecules and d¥sed and its predictions are compared with the simulated
the macromolecule-macromolecule and macromoleculedata. Finally, Sec. V tackles the conclusions.
particle interaction$2,3]. When the patrticle surface is fully
covered by the macromolecules, the observed result is gen- Il. THEORETICAL BACKGROUND
erally a stabilized suspensip#,5]. For partially covered sur- . . .
face>s/, however, the glread{;/magjsorbgd mag/romolecules on a Colloidal aggregation processes may be monitored by the

given particle may attach to the bare patch of another onEime evolution of the cluster —concentrationsg;(t)
forming a particle-particle bridggbridging flocculation ~ —ni(1)/V, wheren;(t) is defined as the number of clusters
[6,7]. of sizei at timet, andV is the whole volume where the

It is well known that the bridging flocculation rate de- 299regation takes place. For dilute systems the time evolu-

pends on the degree of surface coverage. The classical wollpn ©Of the cluster concentrations is given by the Smolu-

of La Mer and Healyf8] predicts a maximum of the floccu- CNOWski equatiori21,22:

lation rate when half the total surface is covered by macro- de 1'% w

molecules. When additional factors contribute to destabiliza- (.

tion, the optimum degree of surface coverage usually dt 2 121 K- (VCi—j(1) Cl(t)jzl kijc;(t). (1)

becomes smalldi9].

In spite of the large amount of experimental work that hasThe kinetic rate constants, or the aggregation kerkgl,

been performed for studying different aspects of these typesepresent the mean rate at which tivoand j-size clusters

of systemg10-1§, there is still a lack of theoretical models stick to form a (+])-size cluster. It contains all physical
information about the kinetics of the aggregating system.

The cluster concentrations(t) are average quantities that

*Email address: moncho@ugr.es do not consider the internal cluster structure. Nevertheless,
"Email address: godriozo@imp.mx this information is implicitly included in the size dependence
*Email address: mtirado@ugr.es of the kernelk;; . It should be noted that the kernel is an
$Email address: schmitt@ugr.es orientational and morphological average of all particular
'Email address: rhidalgo@ugr.es cluster formation possibilities.
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Two irreversible aggregation regimes have been reportedhere P.);; is defined as the probability for twie andj-size
in the literature, diffusion limited cluster aggregation clusters to collide again after a given noneffective collision.
(DLCA) and reaction limited cluster aggregatio0RLCA).  This probability is related to the average number of colli-
Their differences lie basically in the strength of the particle-sions per encounter for a nonaggregating systémby
particle interactions on contact. For DLCA, the clusters dif-
fuse in the absence of interparticle forces and, consequently, 1
the motion is purely Brownian. A pair of clusters only inter- N;i 1P
act on contact, when a short-range infinitely deep potential (Po)ij
well holds them together and forces them to form a larger
cluster. Afterwards, the newly formed cluster continues itsSince bigger clusters have a larger cross secfignmust be
free diffusive motion until it disappears when it collides with an increasing function of the cluster size. The kernel given
any other cluster. The DLCA regime is well described by theby Eq. (4) accounts for both the effect of the sticking prob-

®

Brownian aggregation kernel ability and the influence of multiple consecutive collisions
that may occur during encounters.
k?{ When patrticles are partially covered by, for example, ir-
kﬁr=T(i dy 4 j1de) (j—Mdr 4 j—20dr) (2)  reversibly adsorbed macromoleculsay polymers, proteins,

etc), the sticking probability for two colliding particles will
depend on whether the colliding surface patches are covered

wheredf. Is the cIulster f“’?‘Cta' dimension. For DLCA Pro- or not[25]. Since covered and bare parts interact in a differ-
cesses, its value lies typically close to 1.75 when particle

rearrangements within the clusters do not take place. DLCA md’;l ?I.y’ tgrle_ ectgr)niisog; %oell:;:);ns t(\;ve:)nbt;?eifg\r/]gg;h?fs
is the fastest possible aggregation mode in the absence 8; ype = P

attractive interactions. The corresponding Brownian dimer the surfaces, i.e,, a typical collision between conventional
. o P 9 colloidal particles. The corresponding sticking probability is
formation rate constant is given h22]

denoted byw;. It depends usually on the energy barrier that
8k T arises due to repulsive electric double layer interactions and
B , (3) attractive London—van der Waals-type forces.
370 (2) Type 2: Collisions between a covered part of a particle
and a bare part of another one. In this casgrepresents the
wherekg is the Boltzmann constan, is the temperature, probability for a macromolecule bridge to be formed be-
and 77 is the solvent viscosity. For water @t=293 K, one  tween the particle surfacébridging flocculation.
obtainsk?]=10.79<10 ¥ m3s 1. (3) Type 3: Collisions between two covered surface
An aggregation process becomes reaction controllegatches. In this case, the sticking probability parameter-
(RLCA) when, as a result of the repulsive interactions be-zes the influence of steric interactions due to the absorbed
tween the clusters, only a small fraction of collisions leads tanacromolecule layers. Since steric effects usually impede
aggregation. This corresponds to the presence of a shorkggregation, the value af; is generally quite low and so
range repulsive potential barrier, so that the number of effecthis kind of aggregation process is also known as weak floc-
tive collisions decreases as the barrier height grows. Whesulation.
the particle-particle interactions are sufficiently short ranged, The probability for finding a covered surface patch is
both particles and clusters perform free Brownian motiongiven by the degree of surface coveragieAnalogously, the
and may be assumed to interact only when they collide. Foprobability of finding a bare patch is given by €1p). Ac-
this particular case, the influence of the repulsive barrier oitording to these definitions, the fractions of collisions that
the cluster aggregation may be understood through a stickingccur in configurations 1 and 3 are<{1$)? and ¢?, respec-
probability P defined as the fraction of effective collisions tively. For collisions of type 2, i.e., a collision between a bare
leading to the formation of new bond23,24. Since, in and a covered patch, the probability reagiél— ¢)+ (1
general, more than one collision is needed for aggregation in- ¢)p=2¢(1— ¢). From now on, we will refer to this fac-
this regime and taking into account that these collisions mayors as geometrical probabilities.
take place between a given pair of clusters or may even |n general, the complete set of rate constajsis re-
involve several clusters, we distinguish between clusteryuired to predict the time evolution of the cluster concentra-
cluster collision and cluster-clustencounter The latter is  tions. However, since at the beginning of the aggregation
defined as a sequence of consecutive collisions that a givgitocess only monomers exist in the system, the initial stages
pair of clusters perform. Hence, an encounter starts with @re fully determined by the dimer-formation rate constant
first collision and ends when aggregation takes place or wheg, , . In this work, we will focus our attention on the calcu-
at least one of the involved clusters diffuses away to collidgation of this rate constant.
with others. Recently, the fO”OWing kernel for the RLCA Mu|t|p|y|ng the geometrica| probab“ities by the corre-
regime has been proposed by considering these concepiponding sticking probabilities and summing for the three
(19,20 possible configurations, the overall effective sticking prob-
ability becomes

Br_
11—

P
=K
AR T @ PU$)=ar(1-¢)°+a2¢(1-¢) +azp®.  (6)
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A very simple expression fdk;; immediately follows as
kia( ) =ki1P°(¢), (7)

which already includes the well-known La MdB,26)],
Moudgil [27] and Molski[28] ideas. Equatiori7), however,
does not account for the possibility of two reacting mono-
mers to collide several times during an encounter. Hence, a
more appropriate expression floy; should be deduced. This
may be done by starting from Eg@4), which already ac-
counts for multiple monomer-monomer collisions during en-
counters. Doing so, one obtains

Po(¢)
Kyx( ) =Ky 0 : )
1-[1-P"(¢)]P, FIG. 1. A spherical particle covered partially by a single spheri-

N cal spot(gray zone. The angular size and the orientation vector of
Here,P.=(P)1; denotes the probability for two monomers the spot are given by, andw, respectively.

to collide again after a non-effective collision. The aggrega-

tion kernels given by Eqsl7) and (8) express the dimer- suyrface coverage. In this work, we will focus our attention
formation rate constant as a function of the degree of surfacgn this extreme case. It would also be quite interesting to
coverage and the sticking probabilities, and so both of themtudy the transition from the single spot case to the homoge-
may be employed to describe the aggregation process of pateous one, although this is beyond the scope of this work.

tially covered particles. Figure 1 shows a spherical particle partially covered by a
single spherical spot. The size and orientation of the spot are
Ill. SIMULATIONS given by the aperture anglg, and the orientation vectat,

, , , respectively. The unitary orientation vectdr pointing from

The aggregation processes were simulated off lattice anfle particle center to the center of the surface spot, is ran-
periodic boundary conditions were considered. InitiaMy,  gomly chosen for each particle at the beginning of the simu-
=25000 spherical particles of radius unity were randomlyjation. Since we do not allow for rotational particle diffusion,
scattered in a cube box of side avoiding particle overlap. this vector remains unaltered during the whole aggregation
The box side was fixed & =1015 in order to obtain a process and, consequently, may be considered as an intrinsic
volume fraction ofy, =0.0001. The simulations were per- nhroperty of the particles.
formed as explained in Reff29,30. These types of simula- * The degree of surface coverages related to the angular
tions relate the average diffusion coefficient ofigsize clus- spot sized, by
ter D; to the cluster radius of gyratioR, through the Stokes
law. The fractal nature of the clusters is accountedqy 1 (2= b 1
~1/Ry~i " The simulations do not account for the =7- . d(PfO sinfgdg=5(1-cosbp).  (9)
Brownian rotation of single particles or clusters. ) . _ i

In order to describe the aggregation of partially covered !N order to determine which of the three possible configu-
particles, the original simulation algorithm has to be ex-rations for a pair of particled andB on contact is occurring,
tended for considering a certain fraction of the particle sur{h€ following test is made: iV, f xg=C0s6y=(1-2¢), then
face to be covered by macromolecules. Furthermore, theartlAcleA collides in its covered part. On the contrary, if
three possible types of cluster-cluster collisidbsre-bare, Wa-rag<(1—2¢), then the bare part of particla is in-
bare-covered, and covered-coveredust be distinguished Vvolved. Performing the same test for parti@ehe collision
and their corresponding sticking probabilities;( a,, and  type is determinedFig. 2).
a3) must be taken into account. Hence, when a cluster- The dimer-formation rate constant is easily obtained from
cluster collision occurs, the collision type is determined andhe temporal evolution of the monomer concentratg(t)
the sticking probability is set accordingly. =n,(t)/V for short aggregation times. For the initial stages

It should be pointed out that the spatial distribution of of the aggregation process,;(t) may be calculated assum-
macromolecules adsorbed on the particles’ surfaces is gendhg a constant kernel solution of the Smoluchowski equation,
ally not known for real experimental systems. The coveragei; =Ki1=Ks [31],
may be scattered homogeneously over the whole particle sur-

face, or concentrated in a single spot, or even dispersed in 2V No
several smaller spots. The homogeneous case, where all col- No ny(t)

lisions have the same sticking probability, corresponds to the

well-known RLCA regime. For a single adsorbed spot, how-Plotting the left-hand side of the above equation as a func-
ever, the particle orientation plays a crucial role for aggregation of the aggregation time and fitting a straight line allows

tion and the dimer-formation rate constant is expected tas to obtairk;; as the slope of the fitted curve by considering

depend very strongly on the spot size, i.e., the fractionathe known initial monomer concentratiaq(0)=Ngy/V. Al-
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TABLE |. Sticking probabilities for the six groups considered
for the simulations.

[ [ Il \Y Y% Vi
a; 0 1 1 1 0 0
a, 1 0 1 0 1 0
as 1 1 0 0 0 1

lation and normal coagulation are always accepted. Simi-
larly, group V represents pure bridging flocculation, where
FIG. 2. Schematic view of a typical collision between two aggregation occurs only between covered and uncovered
spherical, partially covered, particles,, and wg are the unitary ~ patches of the colliding particles. On the contrary, group VI
vectors pointing to the spot centers, angh= 31 g represents a May describe a dimerization reaction between anisotropic
unitary vector joining the centers of the particles when contact i§peqies having only one active site each. This_kind of reac-
stablished. tion is very frequent at molecular level. These six groups are
the simplest cases we may study. Although sticking prob-
though the validity of Eq(10) is restricted to short times, abllltles_dlstlnct from O or_l are expected_ to be obtained in
this approximation leads to accurdtg values. many kinds of real experiments, these six groups represent
Figure 3 shows a typical time evolution gf(t) (solid an appropriate starting point for our study and allow for a
line) and the corresponding short-time linear fitashed first approach to the different underlying aggregation mecha-

line). As can be seem(t) is well described by a straight line Nisms. . _ o
a|ong a broad enough time interval. The obtained results are summarized in Flg 4. There, the

relative rate constand2'=k,,/k! is plotted as a function of
¢ for the six groups of sticking probabilitiesquare sym-
bols). For group I,k'fj' increases monotonically from 0 to 1.
Thek?; value obtained by means of computer simulationson the contrary, for group Ill a monotonic decrease is ob-
for the DLCA regime @i=a,=az=1) is k?{=(10.83 served. For group Il the initial aggregation rate goes from the
+0.04)x10 ¥ m¥s™t. This value is in good agreement DLCA value at$={0,1} to its minimum value aip=0.5,
with the theoretical prediction given by E3). We also  wherek!%'=0.708. For group IV, a monotonic decay Idf;
computed the average number of monomer-monomer collifrom the DLCA limit to 0 is also observed, just like the
sions per encounter in a nonaggregating syst@®Q),  behavior obtained for group Ill. The decrease, however, is
since this parameter is required for E@). The result is faster since aggregation for covered-bare patches is forbid-
N1,=6.154, which leads t®.=(P.),,=0.8375. den (w,=0). For group VI, the initial aggregation rate
In order to study the effect of the surface coverage, sixgrows from 0 to the DLCA value, although the increase is
groups of simulations were performed differing only in their sjower than the observed for grougdiso due to the fact of
respective sticking probabilitiesee Table)l having a,=0). Finally, in group V, coagulation is com-
For real experiments group Ill may represent the aggrepletely forbidden for¢p=0 and ¢=1, whereas the initial
gation of partially covered particles by macromolecules.aggregation rate reaches its maximum vakifg=0.708 at
where collisions between two covered parts are forbidden,—g 5
due to steric repulsive interactions, whereas bridging floccu- |t should be noted that, as expected, the simulation results
show some symmetries among them. Indeed, groups Il and
VI turn into groups | and IV, respectively, by replacidgby
(1—¢). Also the curves corresponding to groups Il and V
are symmetric with respect ¢ =0.5.
Figure 4 also shows the theoretical predictions given by
Eqgs.(7) and(8) (dashed and solid lines, respectiveliks can
be observed, Eq7) underestimates the simulation results in
all cases. This was an expected result since this model does
not consider the possibility of several consecutive collisions
per encounter that enhance aggregation. However, when the
correction for multiple collisions is included in the kernel
[Eq. (8)], the obtained theoretical curves by far overestimate

Simulation results

8

gl (10" m’)

~n
1

0 260 460 6(IJO B(IJO 1000

t(s) the simulated data, i.e., particles are predicted to aggregate
too fast.
FIG. 3. Time evolution ofg(t)=(2V/Ng)[ VNg/n.(t)—1] ob- Now, the following question arises from these observa-
tained for a typical simulatiorfsolid line) and the corresponding tions: Why is expressiof8) not capable to predict the simu-
short-time linear fitdashed ling lation data? The problem is that, even though the effect of
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multiple collisions is considered, the model on which B).  are not conditioned for the first collision of any encounter.
is based assumes all consecutive collisions of a single erFhey are noted a®,, for a n-type collision. Due to the
counter to be independent; that is, it takes the sticking probrormalization of the geometrical probabilities, the values of
abilities to beP? for all types of collisions[see Eq.(6)]. Pmn and Py, are related by
However, it is clear that after a first collision, particles are
oriented in a particular direction such that the effective stick-
ing probability for the subsequent collisions will be, in gen-
eral, different fromP°. In other words, after a monomer-
monomer collision of certain type, there is a larger Since for a first collision of an encounter the patches of both
probability that the subsequent collisions turn to be of themonomers are randomly oriented, we have
same type. Hence, the previous model needs to be extended
in order to account for the fact that the sticking probabilities Poi(#)=(1—¢)?,
are conditioned to the preceding type of collision. This will

Pod #)=2¢(1~¢),
Pos(}) = .

be done in the following section.

In order to achieve a good theoretical description of the It should by mentioned that thé dependence of the geo-
simulation results, it is necessary to consider that the geometrical probability matriX P ,n(#)}m n=1-3 iS unknowna
metrical probabilities are conditioned to the previous colli-priori and some realistic model is required. By the moment,
sion type. For the purpose of simplifying the mathematicalhowever, we will develop the kinetic model, assuming that
expressions, the notation introduced in Sec. Il is employedthese quantities are already known. At the end of this section,
which identifies the bare-bare, bare-covered, and covereave will return to this point in order to attempt for a reason-
covered collisions through the subindexes 1, 2, and 3, reable approximation for this matrix.
spectively. In the same way, we defiRg,, as the conditional In addition to the geometrical probabilities, the dimer-
geometrical probability for a collision of typa occurring  formation rate constant also depends on the sticking prob-
after a collision of typem for a given pair of particles. abilities @y, @, andasz. Moreover, the probability for two
Hence,P;, represents the geometrical probability for a pairmonomers to collide againP(), the probability for two
of particles to produce a bare-covered collision after a baremonomers to stop colliding and diffuse away-<{P.), the
bare collision. Notwithstanding, the geometrical probabilitiesaverage time between two consecutive collisiotig, (and

3

3
> Pop=1 Vm=123, > Py,=1. (11
n=1 n=1

(12

IV. THE PROPOSED MODEL AND ITS DISCUSSION
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the average diffusion time between two consecutive encoun- @J{g
ters (g4;;) must also be involved in thie;; expression. o 1Py

The procedure for calculatinky; begins with the follow-

ing identity:

whereV is the volume of the whole system akit) is the
average lifetime of monomefd.9,20. If the sticking prob-
abilities for the different types of collisions are the unity,
a1=a,=az=1, this lifetime becomes the average diffusion

13

P, 1, o, 1-Puliy

Py, % O 1-Polyy
o P ¢ o 1Py

\’0(2 1P 757

S0y 1P
oy 1-Poigy

time, and the aggregation is described by the DLCA regime PHIT-OLZE
Oy 1-Piy

and the Brownian kernel

(14

Pt
dar (P 1- 0, 0y 1-Pory
oy 1-P, I

o, L-P,, 4 Py, 1- 0, Pel

The procedure for determining the average tiftleconsists ﬁ%
of considering all possible event times weighted with their M”{%
corresponding probabilities. As an example, let us consider P\‘tfs Pl

the following event: “A pair of monomers diffuse, meet, and %ﬁ%
collide two times, being both collisions of type 1. After- Pyl o, Pole
wards, the monomers diffuse away and one of them collides Pt Wﬁ%

with a third monomer twice, being the first collision of type
3 and the second of type 2. During the last collision the

Pss1- 04 Pol
R ——

Py 1-0, Pot
monomers aggregate and form a dimer.” The average time \’003 1-P,, 1) Wﬁ%
¢’ 1]

involved in this event i$., = 2t.+ 2ty and the correspond-
ing probability for it is Pe,=Pgi(1—a1)P.P11(1—aq)(1
—P¢)Po3(1— a3)P.P3yas. Figure 5 shows a tree diagram

Py 1-0y Pele
\»az L-P, {47
Pz 1- 0y Pole
S~wo Py

for the possible ways that this kind of aggregation process

may follow considering up to three collisions. Defining the
effective sticking probabilitie®®, P!, P?, andP? as

P"(¢)= 1P+ asPpot+asPns, n=0,1,2,3, (15

FIG. 5. Tree diagram for the possible ways that an aggregation
process may follow considering up to three collisions. The corre-
sponding probabilities and the involved average times are included.
The average lifetimét) is the sum of all event times weighted by
their corresponding probabilities.

the average monomer lifetime may be expressed by the fol-

lowing expansion:

<t>z§ Pevtes

=t PO+ (tgir +tc) Pcn}_:l Pon(1— aq) P+ 2t

3

X(1- Pag1 Pon(1— @) PO+ (tgir+ 2tc)

3

x<Pc>2n§:1 Pon(1— ap)Pom(1— ap) P™

+<2tdif+tc>Pc<1—Pc)n;:l Pon(1— ay)

X[Pom(1— @m) PO+ Pom(1— am) P+ 3tgi(1— Pg)?

3

X >  Pon(1= @) Por(1 = am) PO

n,m=

(16)

P=(P%,P?,P3), 17
ISO: ( PO, PO, PO),
Q°=(Qo1.Q02.Q0a).

Q11 Q2 Qs
A=| Qa1 Q2 Qu|,
Qsz1 Qs Qs

Qo1 Qo2 Qos
A%=| Qo1 Qo2 Qoz |,
Qo1 Qo2 Qos

where Qon( ) =Pon(#)(1—an) and Qmy(#)=Pmn(4)(1
—a,). Both, Qq, and Q.,, contain all the mathematical de-
pendence on the sticking probabilities and on the degree of

For the further analysis, it is convenient to group the geo<overage.
metrical and the equivalent probabilities and express them in In terms of the above defined matrices, the average time

the following matrix forms:

turns
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() =tgitPO+ (tgis+ o) PcQ° P+ 2ty;(1— P.) Q0 P°
+ (tair+2te) (Pe) 2Q- A- P+ (2tgi+to) Pe(1—P)
X[QP- A-PO+QP- A°- P]+3tyis(1— P)?Q%- A°- PP
SRS (18)

However, instead oft) it is convenient to calculatge*').
Hence,

(€9=3 Poere
U

= eXtaif PO+ (eXirgXte) p_ Q0. B+ e2Xtif(1— P_) Q. PO
+ (extdierXtC)( Pc)ZQO' A-P
+ (e2XtairgXe) P(1— Pc)[(jo~A- |30+(§0~A0- |S]
+eUir(1—P)2Q0 A% PO+ ... (19)
The last sum may be written in the following form:
() =etitPO+ it Q0. {7+ [ P Ae e+ (1— P,).A e*tif]
+[P A+ (1— Py) A%i]2+ . ..} . [PeXeP
+(1—P,)eXairp?], (20

whereZ is the 3x 3 identity matrix. We define the matrik
as

o0

H(x)= 2, [PoAe et (1-Pg) A% air]"
n=0

=[ZT—-P Aec—(1-P,) A% i1 (21)

Here,l{ ! represents the inverse matrixiaf Using Eq.(21)

in Eqg. (20), we finally obtain the following expression that

contains the contributions for all possible events

(€Y =e it PO+ Q0. H(x) - [ PP+ (1— P,)eXitPO]}.
(22)

PHYSICAL REVIEW E68, 011404 (2003

The average time between two consecutive monomer-
monomer collisionst., is much shorter than the average
diffusion time. In fact, for the simulation conditions given in
Sec. Il we obtained,/ty;;=3.96<10 3. Hence, we may
safely assumé,~0 in order to simplify Eq.(24). By doing
so, the kinetic rate constat; may be obtained by only
replacing this average lifetime on Eq4.3) and (14) while
considering expressiord7) and(21). Its final explicit form
is given by

@:1_(1_P) By+CyPc+Dy(Pe)?
k%1 “1-CpP—Dp(Po)2—Ep(Po)®
(25
where
Bu=Qo1+ Qo271 Qos, (26)

Cu=0Q01( Q12T Q13— Q22— Q33)
+ QoA Q211+ Q23— Q11— Q33)
+ Qo3(Q31+ Q32— Q11— Q20 ,

Dy =Qo1(Q12Q23+ Q13Q32+ Q22Q33)
~ Qo1(Q12Q331 Q13Q221+ Q25Q32)
+ QoA Q23Q311 Q21Q13+ Q11Q33)
— Qo2 Q21Q331 Q29Q111 Q15Q31)
+Qo3(Q31Q121 Q32Q211 Q11Q22)
— Q03(Q31Q221 Q32Q11+ Q12Q21),

Cp=Qu11 Q2* Qas,
Dp=0Q12Q211+ Q13Q311 Q23Q32
—(Q11Q221 Q11Q33+ Q22Q33),
Ep=detA.

Note that this expression has the fokﬂ/k?{=1—A(¢),
whereA(¢) is a positive quantity which represents the cor-
rection to the Brownian kernel due to noneffective collisions.
The above expression gives us the dimer-formation rate con-

The exact mathematical expression for the average monatant whatever the values of the sticking probabilities are, for
mer lifetime may be obtained from the above equation bythe three possible types of collisions and for all possible

means of the relationship

<t>=(‘9<;:>)x

(23)
=0

It becomes

PP+ (1—P)P]

x=0

. [dH
<t>:tdifP0+Q0'(a>

+Q0-H(0) [ (tgi+te) PP+ 2tgi¢(1— Pe) PO,
(24)

degrees of surface coveradg;=kq1(a@1,a2,a3,¢). There-
fore, it completely describes the initial stages of the aggre-
gating system. Moreover, E(R5) has a general validity, i.e.,
it does not depend on the way in which the surface coverage
is distributed on the particle surface. In other words, it can be
applied when the surface coverage is concentrated in a single
circular spot or even when it is scattered over the surface in
several smaller spots. The only difference between these two
cases lies on the expressions for the conditional geometrical
probabilities,P -

The general form, given by Ed25), may be simplified
when some specific situations are considered. In the follow-
ing section, we discuss the simplest ones.
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A. Particular cases where P%=a,Pg,+ a,Pg+ azPos. Again, the classical
(1) All types of collisions have the same sticking prob- RL_QA form 0is obtained having an effective sticking prob-
ability: a;=a,=as=a. Then, considering the normaliza- ability P=P" [see Eq/(8)].

tion condition [Eq. (11)] we have P°=pPi=p2=p3=q, (3) Aggregation is forbidden for collisions of typeand it
Qon=Pon(1—a) and Qmu=Pnn(1—a). Using these rela- IS always accepted for the other types;=1—J;n,. Now,
tions in Egs.(25) and (26) we obtain Qom=Pomémn and Qin="Pi,dmn and, usingky;/ky;=1
—A, one obtains for the correctioh,
kll a
k?{ 1_(1—(1)Pc (27) Aaz,a3=l=(1_P )L
a’lzo ¢ 1- Pcpll,

Since all types of collisions have the same sticking probabil-
ity, the aggregation rate does not depend on the geometrical

probabilities and on the degree of coverage. Therefore, the A“l':%:l:(l_ Pc)i, (29
dimer-formation rate constant becomes simplified to the =0 1=-PcP2
original expression for RLCA witlP =« [see Eq.(4) for i
:le] . . L ay,ap=1_ P03
(2) The geometrical probability for all types of collisions Agto =(1- PC)FCPBB-

is always at random and it does not depend on the previous

one. In this cas®mn=Po, and A=.A" This leads to (4) Coagulation is always accepted for collisions of type

K po and it is forbidden for the other types;,= 6,,. In this case,
% S — (28 Qom=Pom(1—=6mn) andQ;m=Pn(1—6mp) and theA ex-
kii 1—(1-P%)P pression is given by

Pod1—Pc(P33—P23) |+ Pod 1= Pc(P2—P3y) |
(Pt Pag)Pet (PooP3s— PasPsy) (P)?

an,a3=0
A293=0= (1 p,)

a;=1

ACLas=0_ (1 _p ) Poll 1= P¢(P33—P13) ]+ Pod 1= Pc(P13—P3y)]
1—(Pyy+P3g) P+ (P11P33— P13P3) (Pe)?

a,=1

Aal;“f:0= (1-Py) Poi[ 1= P(P2y—P1p) ]+ Pol 1= Pc(P11— P2y ] . (30
4 1= (Pyy+ P2y Pet+ (P1iPoy—P1oPop) (Po)?

Note thatA depends on the degree of surface coverage P11( ) =Pa3(1— o),
through the geometrical probabilitieB,,, in expressions
(28)—(30). Pox ) =Po(1—¢),
Pi3(¢) =Pa(1—¢), (31

B. The geometrical probabilities P,

P =P3(1-¢),

As mentioned before, the geometrical probabilities are 12#)=Pad1-4)
well described by expressiofi2) for the first collision of Poy(d)=Po(1— ).
any encounter. For the subsequent consecutive collisions,
however, the situation is not as simple. As was previouslfConsequently, we have to obtain an expression for the con-
shown, to assume all geometrical probabilities to be historgitional geometrical probabilities?,,,, that is compatible
independent leads to an overestimation of the aggregatiowith the normalization condition and with the symmetry re-
rate. Hence, it becomes a necessity to account for the particlationships/expressiong11) and(31)].
orientation during the previous collision. For the sake of simplicity, we denoté.=¢ and ¢,

The nine conditional geometrical probabilities are con-=(1— ¢) as the fractions of covered and bare surface, re-
nected among them through the normalization conditib;n ~ spectively, such thap.+ ¢,=1. Let us suppose that the first
(11)]. Hence, only six probabilities are really independent.collision between a pair of particles is of type 3, i.e., it in-
Furthermore, there exist the following symmetries: volves a covered-covered contdsee Fig. 63)]. Since the
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o $p=1-9.=1-¢ 8= 1451 lisions. It also shows that the surface spot where the particles
@ / 4 {4 ’ collided the first time looks larger in the subsequent collision
‘l\ 9.=¢ ' 9.5A9) (see arrows The general expressions for the conditional
M ’ |::> geometrical probabilities read as follows:
a4 AN 9.A9 B/ Pu=dpdp="T(1- )%
My 1
fo7l- gm0 Pzl O P1=20h(1— ¢p)=2f(1- $)[1-f(1- )],
first collision of type 3 second collision
— (11— A N =11 — _ 2
p.=1- 9, =1-A1-§) P1s=(1 ¢b)(1 ¢b) [1 f(1 d)1%

p.=1-¢,=¢

Dy Par=(1- ) b =[1-f($)1f(1- &),

P2o= eyt [1—dcl[1— by ]
=H(Pf(1-¢)+[1-f(H)I[1-f(1-¢)], (32

9.=1-0,~¢ 9.= L9, =1:A1-9) : /
b " Pas= ¢i(1- o) =F()[1-f(1- )],
first collision of type 1 second collision
P e 9,=1-9, =1 P3i=(1- o) (1—pr)=[1-f($)]%,
© / 4 74

’w [_‘?J-‘f(@ Por=20((1~ ) =20($)[1- ()],

: ‘ ! Pss=pede="F(4)%.
9,=1-¢" ’ 9, =A1-9)
- The above expressions verify both the normalization condi-
9.=1-9,=0 = 1-9,=1A1-9) tion [Eq. (11)] and the symmetry relationship&qg. (31)] in a
first collision of type 2 second collision natural way. Sincep represents the probability of finding a
covered surface part for a first collisioh(¢) denotes the
FIG. 6. Schematic view of the three pOSSible situations that ma)probab”'ty for f|nd|ng a covered surface patch after a colli-
appear as a consequence of a first collision. Situdtipis obtained  sjon on the covered part. It should be noted that only the
after the first collision of type 3(b) is the result of a collision of functionf( ) is necessary in order to know all the geometri-
type 1, and(c) is that of type 2. In all casesh=¢ and ¢,=(1 5| probabilities. The explicit form of functiohwill be de-
— ¢) denote the fractions of covered and uncovered surface, respets mined by comparing the theoretical predictions with simu-
tively. Functionf () [f(¢y)] represents the value of the localized lation results. Since the geometrical probabilities do not
¢. [ ¢p] around the contact point. That is, functibrgives us the depend on thé sticking probabilities , a,, andas, we can

robability of finding a given surface patch again after a collision . . . ..
gn this p;/tcr(see te?@t g P g use the simplest simulation conditions for deducfiig).

first collision occurs at random orientation, the geometrical C. Discussion

T . _ _ _ 2
probabilities are given byPo=¢ydp=(1-4)", Po, The relative kinetic rate constants, obtained by means of

— — _ _ — 42

=2¢phe=24(1—¢), and Pog=chc=¢" Afterwards,  ginjations for the six groups mentioned in Table I, have

both particles are oriented in a particular direction and the)f)een fitted theoretically usiridle'— 1—A. Groups I, Il, and
1 . ’ 1

can explore only a relative small part of their respective sur; : o
faces. Consequently, the conditional geometrical probabili!II correspond to the particular cas8), specifically to the

ties Py;, Pay, andPas will, in general, differ from the prod- three equations shown in Eq&9), respectively. Analo-

. gously, groups 1V, V, and VI are theoretically described by
;Jec;;gctz\t/aeli;actlon of covered and bare surfacgsand ¢, , the particular caséd) through Eqs(30).

It seems convenient to define an effective surface cover: In these expressions, the sticking probabilities, a,
p ] , and «; together with the degree of surface coveragare
age e =1(dc)=1(4) and ¢, =1-¢;=1-1(¢) such tf?at input parameters given by the simulation conditions. Also
the former product expressions remain valid. Hebg.(#,)  p_=0.8375 is kept constant for all cases. Consequently, the
represents the value of the localizel (¢,) around the oy free parameter is the unknown functiéf). There-

contact point. In other words, we treat the second collision ag;e the following empiric expression is proposed 1)
if it had occurred between two randomly oriented particles

with a renormalizedeffective surface coveragey, and ¢, . f(p)=pr 4vo(1=9), (33
Hence, Pai= oy =[1-1(¢)1% Ps=2dph(=2f(¢)[1
—f(#)], andPa3= ¢, =T($)?. These concepts are sche- Here,u and v are two fitting parameters that do not depend

matically represented in Fig. 6 for all possible types of col-on ¢. On the one handy— v controls the value ok} at
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1.0 1.0
0.8 - 0.8
2 - 06 & _ 0.6
= X
< 0.4 Group | < 0.4{Group Il
=0 =1
0.2 a=1 029 =0
0.0 r T a3=1 0.0 a3=1 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
¢ ¢
1.0 0 Group IV
0.8 081 ) o I
: : =0 FIG. 7. The same simulatet;S'=k,,/kE!
5 - 06 & _ 069 =0 data shown in Fig. 4square symbojsare com-
X ~ : oo .
< o4l Grow = o4l pared to the theoretical predictions obtained by
' r;’”j using the kinetic model given by Eq25) (solid
0.21 a;=1 0.21 lines). The curves were obtained far=0.3558
00l _%=0 _ . . 0.04 . . and»=0.2438.
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
4 ¢
10 2T Group VI
=0 L]
] 084 %
0.8 a2=0
& _ 061 a_o06] %=1
£ <
< 04 Group V 041
o= 0.2
0.2 zz2=1 .
00 : 0 : 0.0 - : : .
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
¢ ¢

¢=0.5, whereasu+ v determines the shape of the curve compare the simulation results with the theoretical predic-
kie'=Kke(4). For example, the height of the maximum at tions given by the general expressid2§) and (26), where

¢=0.5 and the width of the curve described for groufsee
Fig. 4 are independently controlled by—v and w+ v,

respectively.

rel

Both x and v were determined by fitting;; (¢) only for
group V. The best fit is obtained far=0.3558+0.0157 and
v=0.2438-0.0210. Then, these values are kept fixed for thefor all cases, the relative error is lower than 2%.
other groups. The obtained theoretical curigsid lineg are
shown together with the simulated ddsmuare symbojsin

the @ values are not necessarily fixed to 0 or 1. Hence, a total
number of 18 simulations were performed for different non-
trivial values ofaq, a,, anda; and taking¢p=0.3,0.5, and
0.8 (see Table Ii. Again, the theoretically obtainddfl' val-

ues match the simulated data quite satisfactorily. Note that

Fig. 7. As can be seen, the kinetic model reproduces the
simulation results very satisfactorily for all groups and for all
degrees of surface coverage.

Figure 8 depicts functionf ¢) (solid line) and ¢ (dashed
line). As observedf(¢)= ¢ for all ¢ values. Sincep rep-
resents the probability for finding a surface patch at the first
collision andf(¢) is the same probability after a given col-
lision on the covered part of the particle, this result proves
that the subsequent collisions have a higher probability to
occur at the same configuration than the previous one.

It should be remembered that our simulations were per-
formed without considering the particle rotational Brownian
motion. This may lead to an overestimation f@¢fp), since
the correlation between the orientations of the particles at a
first collision with the orientations of the consecutive ones

f(9)

1.0

0.6

0.4+

0.2 1

0.0

would, in principle, decrease. Nevertheless, we expect only a FiG. 8. f(4) (solid line) and ¢ (dashed lingplotted as a func-

slight change off(#) due to the rotational contribution.

tion of ¢. The fact thatf (¢) = ¢ means that subsequent collisions

Since the six groups of simulations were restricted to thehave a higher probability to occur in the same configuration as the

particular cases3) and (4), it would also be desirable to previous one.
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TABLE Il. Comparison between the theoretical and simulatedmay be formally achieved by considering a size-dependent
rate constants for different sets of sticking probabilities. free surface coveragg; and by replacind®.— (P.);; . How-
ever, this would be a very difficult, if not impossible, task by

@ re|¢:0'i| re|¢:0'i| re|¢:o'§e| the following reasons. First, it is not clear whether the con-
@ @ as Kilsm Kiiln Kiilsm Kifln KiTlsm KiZln  gitional geometrical probabilitie®,,, could be written in
005 02 08 0497 0488 0.646 0.644 0.859 0.867terms of a single functiori(¢). Second, and assuming that
0.1 0.05 0.05 0.328 0.334 0.283 0.288 0.250 0.250this single function exists, it would depend on the cluster size
03 07 005 0.794 0.808 0.771 0.771 0.584 o0.575and on the way that particles associdte dimer that is
05 01 0.3 0.695 0.707 0.633 0635 0656 0.661formed by bounding the covered patches of its constituting
06 03 09 0841 0849 0.857 0848 0912 0.918particles would show a small free degree of coverage, in-
08 07 0.2 0926 0928 0866 0875 0743 0.747deed. This clearly indicates that the aggregation regime will
also affect the spot distribution on the free clusters surface,
and hence, functiofiwill also depend on the sticking prob-
abilities a,: f=fi(di, a1, a5, @3).

Finally, some curves calculated by using general expres-
sion (25) are shown for several values of the sticking prob-

abilities in Fig. 9. V. CONCLUSIONS
Since the geometrical probabilitidy,,,, and the sticking

probabilities«,, are totally independent, the constant param- A model for describing the initial stages of the aggrega-

Characterize the geomelrical aspects of the pardcle colisiorln O Sphefical partially covered partcles has been pro-
9 P b osed. The motivation for this study is founded on the lack

and, therefore, they depend on the distribution of the surfacgf table kineti del for this kind of i
coverage. Indeed, the valugs= uy=0.3558 andv=r, ol an acceptable kinetic model for this kind of aggregating

=0.2438 correspond to simulations performed by assumin ystem. .In fact, wo prev!ously proposed models were com-
a spotlike surface coverage. In contrast, for a homogeneousfATed With the data obtained by means of computer simula-
distributed surface coverage, the shorttime kinetics is delons- In both cases, the results showed a clear mismatch
scribed by the classical RLCA regini€q. (8)] and, conse- Petween theory and simulation. _
quently, the geometrical probabilities are not conditionalized The model is based on the calculation of the average
to the previous collision®,,,= Py, . Comparing expressions Mmonomer lifetime, which is a function of the fraction of sur-
(12) and (32) we obtainu=1 and»=0 for this particular face coverage, the sticking probabilities for each type of pos-
case. When the coverage is distributed forming a given numsible contacts, and the conditional geometrical probabilities
ber of patches, values ranging in the intervals[ uo,1] and  for a given type of contact. This concepts lead to the defini-
v=[0,1,] are expected. Moreovey, is an increasing func- tion of a function that quantifies the probability for two col-
tion of the homogeneity of the spot spreading, whenemsa  liding particles to collide again on the same surface patch of
decreasing one. Consequently,and v characterize the su- one of the involved particles after a noneffective collision of
perficial homogeneity. any type. This function of the degree of surface coverage
The previous model may, hypothetically, be extended fowas then determined by computer simulations.
describing the moderate and long aggregation stages. This Unlike the initially tested models, the proposed model

FIG. 9. Some curves calculated using general
expression25) are shown for the following sets
of fixed sticking probabilities(a) «,=0.3 and
a3z=1, (b) a,=0.3 anda3=0, (c) @;=0.2, and
a3=0.2, and(d) @;=0.2 anda3=0.4.

ﬁ -
-
X 0.4
I
0.2 ,=0.2 021 =0.2
,=0.2 a,=0.4
0.0 T T T T 0.0 T T T T
0.0 0.2 04 086 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
[ [3
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