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Modeling the aggregation of partially covered particles: Theory and simulation
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A theoretical model for describing the initial stages of the aggregation of partially covered colloidal particles
is presented. It is based on the assumption of short-range interactions that may be modeled by a sticking
probability on contact. Three types of sticking probabilities are distinguished depending on the collision type,
i.e., for bare-bare, bare-covered, and covered-covered collisions. Hence, the model allows an analytical ex-
pression for the dimer-formation rate constantk11, to be deduced as a function of the degree of surface
coverage and the three sticking probabilities. The theoretical predictions are contrasted with simulated data.
The observed agreement between theory and simulations shows the usefulness of the model for predicting the
initial stages of this kind of aggregation processes.
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I. INTRODUCTION

Macromolecules adsorbed onto colloidal particle surfa
may either stabilize or destabilize the dispersions. T
makes the employment of macromolecules as additives
suspensions a much extended practice for industrial
poses. Several applications can be found in mineral
waste water treatments, such as water treatments for hu
consumption, paper industry, drilling fluids, ceramics, ag
chemical formulation, and in immunoassay diagnostic t
design@1#. However, such processes are so highly comp
in nature that they have not been completely understood,

Given any particular situation where macromolecules a
colloidal particles are taking part, the process will depend
the degree of surface coverage with macromolecules an
the macromolecule-macromolecule and macromolec
particle interactions@2,3#. When the particle surface is fully
covered by the macromolecules, the observed result is
erally a stabilized suspension@4,5#. For partially covered sur-
faces, however, the already adsorbed macromolecules
given particle may attach to the bare patch of another
forming a particle-particle bridge~bridging flocculation!
@6,7#.

It is well known that the bridging flocculation rate de
pends on the degree of surface coverage. The classical
of La Mer and Healy@8# predicts a maximum of the floccu
lation rate when half the total surface is covered by mac
molecules. When additional factors contribute to destabili
tion, the optimum degree of surface coverage usu
becomes smaller@9#.

In spite of the large amount of experimental work that h
been performed for studying different aspects of these ty
of systems@10–18#, there is still a lack of theoretical mode
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for explaining their flocculation kinetics. In this work w
attempt to fill this gap proposing a model based on La Me
idea of a surface coverage dependent aggregation rate
pable of describing the initial stages of an aggregation p
cess. Additionally, the concepts of sticking probability a
consecutive collisions recently employed for modeling t
transition from diffusion to reaction limited cluster aggreg
tion are also included@19,20#. The obtained results are the
compared with Brownian dynamics simulations.

The paper is organized as follows. Section II reports
theoretical background. Section III briefly describes t
simulations, presents some simulation results, and confi
that the models found in the literature are not capable
matching the data. In Sec. IV an alternative model is p
posed and its predictions are compared with the simula
data. Finally, Sec. V tackles the conclusions.

II. THEORETICAL BACKGROUND

Colloidal aggregation processes may be monitored by
time evolution of the cluster concentrations,ci(t)
5ni(t)/V, whereni(t) is defined as the number of cluste
of size i at time t, and V is the whole volume where the
aggregation takes place. For dilute systems the time ev
tion of the cluster concentrations is given by the Smo
chowski equation@21,22#:

dci

dt
5

1

2 (
j 51

i 21

kj ,i 2 j cj~ t !ci 2 j~ t !2ci~ t !(
j 51

`

ki j cj~ t !. ~1!

The kinetic rate constants, or the aggregation kernel,ki j ,
represent the mean rate at which twoi- and j-size clusters
stick to form a (i 1 j )-size cluster. It contains all physica
information about the kinetics of the aggregating syste
The cluster concentrationsci(t) are average quantities tha
do not consider the internal cluster structure. Neverthel
this information is implicitly included in the size dependen
of the kernelki j . It should be noted that the kernel is a
orientational and morphological average of all particu
cluster formation possibilities.
©2003 The American Physical Society04-1
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Two irreversible aggregation regimes have been repo
in the literature, diffusion limited cluster aggregatio
~DLCA! and reaction limited cluster aggregation~RLCA!.
Their differences lie basically in the strength of the partic
particle interactions on contact. For DLCA, the clusters d
fuse in the absence of interparticle forces and, conseque
the motion is purely Brownian. A pair of clusters only inte
act on contact, when a short-range infinitely deep poten
well holds them together and forces them to form a lar
cluster. Afterwards, the newly formed cluster continues
free diffusive motion until it disappears when it collides wi
any other cluster. The DLCA regime is well described by t
Brownian aggregation kernel

ki j
Br5

k11
Br

4
~ i 1/df1 j 1/df !~ i 21/df1 j 21/df !, ~2!

where df is the cluster fractal dimension. For DLCA pro
cesses, its value lies typically close to 1.75 when part
rearrangements within the clusters do not take place. DL
is the fastest possible aggregation mode in the absenc
attractive interactions. The corresponding Brownian dim
formation rate constant is given by@22#

k11
Br5

8kBT

3h0
, ~3!

where kB is the Boltzmann constant,T is the temperature
andh0 is the solvent viscosity. For water atT5293 K, one
obtainsk11

Br510.79310218 m3 s21.
An aggregation process becomes reaction contro

~RLCA! when, as a result of the repulsive interactions b
tween the clusters, only a small fraction of collisions leads
aggregation. This corresponds to the presence of a sh
range repulsive potential barrier, so that the number of ef
tive collisions decreases as the barrier height grows. W
the particle-particle interactions are sufficiently short rang
both particles and clusters perform free Brownian mot
and may be assumed to interact only when they collide.
this particular case, the influence of the repulsive barrier
the cluster aggregation may be understood through a stic
probability P defined as the fraction of effective collision
leading to the formation of new bonds@23,24#. Since, in
general, more than one collision is needed for aggregatio
this regime and taking into account that these collisions m
take place between a given pair of clusters or may e
involve several clusters, we distinguish between clus
cluster collision and cluster-clusterencounter. The latter is
defined as a sequence of consecutive collisions that a g
pair of clusters perform. Hence, an encounter starts wit
first collision and ends when aggregation takes place or w
at least one of the involved clusters diffuses away to coll
with others. Recently, the following kernel for the RLC
regime has been proposed by considering these conc
@19,20#:

ki j 5ki j
Br P

12~12P!~Pc! i j
, ~4!
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where (Pc) i j is defined as the probability for twoi- andj-size
clusters to collide again after a given noneffective collisio
This probability is related to the average number of co
sions per encounter for a nonaggregating systemNi j by

Ni j 5
1

12~Pc! i j
. ~5!

Since bigger clusters have a larger cross section,Ni j must be
an increasing function of the cluster size. The kernel giv
by Eq. ~4! accounts for both the effect of the sticking pro
ability and the influence of multiple consecutive collisio
that may occur during encounters.

When particles are partially covered by, for example,
reversibly adsorbed macromolecules~say polymers, proteins
etc.!, the sticking probability for two colliding particles wil
depend on whether the colliding surface patches are cov
or not @25#. Since covered and bare parts interact in a diff
ent way, three types of collisions can be distinguished.

~1! Type 1: Collisions between two bare~uncovered! parts
of the surfaces, i.e., a typical collision between conventio
colloidal particles. The corresponding sticking probability
denoted bya1. It depends usually on the energy barrier th
arises due to repulsive electric double layer interactions
attractive London–van der Waals-type forces.

~2! Type 2: Collisions between a covered part of a parti
and a bare part of another one. In this case,a2 represents the
probability for a macromolecule bridge to be formed b
tween the particle surfaces~bridging flocculation!.

~3! Type 3: Collisions between two covered surfa
patches. In this case, the sticking probabilitya3 parameter-
izes the influence of steric interactions due to the absor
macromolecule layers. Since steric effects usually imp
aggregation, the value ofa3 is generally quite low and so
this kind of aggregation process is also known as weak fl
culation.

The probability for finding a covered surface patch
given by the degree of surface coveragef. Analogously, the
probability of finding a bare patch is given by (12f). Ac-
cording to these definitions, the fractions of collisions th
occur in configurations 1 and 3 are (12f)2 andf2, respec-
tively. For collisions of type 2, i.e., a collision between a ba
and a covered patch, the probability readsf(12f)1(1
2f)f52f(12f). From now on, we will refer to this fac-
tors as geometrical probabilities.

In general, the complete set of rate constantski j is re-
quired to predict the time evolution of the cluster concent
tions. However, since at the beginning of the aggregat
process only monomers exist in the system, the initial sta
are fully determined by the dimer-formation rate consta
k11. In this work, we will focus our attention on the calcu
lation of this rate constant.

Multiplying the geometrical probabilities by the corre
sponding sticking probabilities and summing for the thr
possible configurations, the overall effective sticking pro
ability becomes

P0~f!5a1~12f!21a22f~12f!1a3f2. ~6!
4-2
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A very simple expression fork11 immediately follows as

k11~f!5k11
BrP0~f!, ~7!

which already includes the well-known La Mer@8,26#,
Moudgil @27# and Molski@28# ideas. Equation~7!, however,
does not account for the possibility of two reacting mon
mers to collide several times during an encounter. Henc
more appropriate expression fork11 should be deduced. Thi
may be done by starting from Eq.~4!, which already ac-
counts for multiple monomer-monomer collisions during e
counters. Doing so, one obtains

k11~f!5k11
Br P0~f!

12@12P0~f!#Pc

. ~8!

Here,Pc[(Pc)11 denotes the probability for two monome
to collide again after a non-effective collision. The aggreg
tion kernels given by Eqs.~7! and ~8! express the dimer
formation rate constant as a function of the degree of sur
coverage and the sticking probabilities, and so both of th
may be employed to describe the aggregation process of
tially covered particles.

III. SIMULATIONS

The aggregation processes were simulated off lattice
periodic boundary conditions were considered. Initially,N0
525 000 spherical particles of radius unity were random
scattered in a cube box of sideL, avoiding particle overlap
The box side was fixed toL51015 in order to obtain a
volume fraction ofcv50.0001. The simulations were pe
formed as explained in Refs.@29,30#. These types of simula
tions relate the average diffusion coefficient of ani-size clus-
ter Di to the cluster radius of gyrationRg through the Stokes
law. The fractal nature of the clusters is accounted byDi
;1/Rg; i 21/df . The simulations do not account for th
Brownian rotation of single particles or clusters.

In order to describe the aggregation of partially cove
particles, the original simulation algorithm has to be e
tended for considering a certain fraction of the particle s
face to be covered by macromolecules. Furthermore,
three possible types of cluster-cluster collisions~bare-bare,
bare-covered, and covered-covered! must be distinguished
and their corresponding sticking probabilities (a1 , a2, and
a3) must be taken into account. Hence, when a clus
cluster collision occurs, the collision type is determined a
the sticking probability is set accordingly.

It should be pointed out that the spatial distribution
macromolecules adsorbed on the particles’ surfaces is ge
ally not known for real experimental systems. The covera
may be scattered homogeneously over the whole particle
face, or concentrated in a single spot, or even disperse
several smaller spots. The homogeneous case, where al
lisions have the same sticking probability, corresponds to
well-known RLCA regime. For a single adsorbed spot, ho
ever, the particle orientation plays a crucial role for aggre
tion and the dimer-formation rate constant is expected
depend very strongly on the spot size, i.e., the fractio
01140
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surface coveragef. In this work, we will focus our attention
on this extreme case. It would also be quite interesting
study the transition from the single spot case to the homo
neous one, although this is beyond the scope of this wor

Figure 1 shows a spherical particle partially covered b
single spherical spot. The size and orientation of the spot
given by the aperture angleu0 and the orientation vectorŵ,
respectively. The unitary orientation vectorŵ, pointing from
the particle center to the center of the surface spot, is r
domly chosen for each particle at the beginning of the sim
lation. Since we do not allow for rotational particle diffusio
this vector remains unaltered during the whole aggrega
process and, consequently, may be considered as an intr
property of the particles.

The degree of surface coveragef is related to the angula
spot sizeu0 by

f[
1

4pE0

2p

dwE
0

u0
sinu du5

1

2
~12cosu0!. ~9!

In order to determine which of the three possible config
rations for a pair of particlesA andB on contact is occurring,
the following test is made: ifŵA• r̂ AB>cosu05(122f), then
particle A collides in its covered part. On the contrary,
ŵA• r̂ AB,(122f), then the bare part of particleA is in-
volved. Performing the same test for particleB the collision
type is determined~Fig. 2!.

The dimer-formation rate constant is easily obtained fr
the temporal evolution of the monomer concentrationc1(t)
5n1(t)/V for short aggregation times. For the initial stag
of the aggregation process,c1(t) may be calculated assum
ing a constant kernel solution of the Smoluchowski equati
ki j 5k115ks @31#,

g~ t ![
2V

N0
FA N0

n1~ t !
21G5k11t. ~10!

Plotting the left-hand side of the above equation as a fu
tion of the aggregation time and fitting a straight line allow
us to obtaink11 as the slope of the fitted curve by consideri
the known initial monomer concentrationc1(0)5N0 /V. Al-

FIG. 1. A spherical particle covered partially by a single sphe
cal spot~gray zone!. The angular size and the orientation vector
the spot are given byu0 andŵ, respectively.
4-3
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though the validity of Eq.~10! is restricted to short times
this approximation leads to accuratek11 values.

Figure 3 shows a typical time evolution ofg(t) ~solid
line! and the corresponding short-time linear fit~dashed
line!. As can be seen,g(t) is well described by a straight lin
along a broad enough time interval.

Simulation results

Thek11
Br value obtained by means of computer simulatio

for the DLCA regime (a15a25a351) is k11
Br5(10.83

60.04)310218 m3 s21. This value is in good agreemen
with the theoretical prediction given by Eq.~3!. We also
computed the average number of monomer-monomer c
sions per encounter in a nonaggregating system (P50),
since this parameter is required for Eq.~8!. The result is
N1156.154, which leads toPc5(Pc)1150.8375.

In order to study the effect of the surface coverage,
groups of simulations were performed differing only in the
respective sticking probabilities~see Table I!.

For real experiments group III may represent the agg
gation of partially covered particles by macromolecul
where collisions between two covered parts are forbid
due to steric repulsive interactions, whereas bridging floc

FIG. 2. Schematic view of a typical collision between tw

spherical, partially covered, particles.ŵA and ŵB are the unitary

vectors pointing to the spot centers, andr̂ AB5
1
2 rWAB represents a

unitary vector joining the centers of the particles when contac
stablished.

FIG. 3. Time evolution ofg(t)5(2V/N0)@AN0 /n1(t)21# ob-
tained for a typical simulation~solid line! and the corresponding
short-time linear fit~dashed line!.
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lation and normal coagulation are always accepted. Si
larly, group V represents pure bridging flocculation, whe
aggregation occurs only between covered and uncove
patches of the colliding particles. On the contrary, group
may describe a dimerization reaction between anisotro
species having only one active site each. This kind of re
tion is very frequent at molecular level. These six groups
the simplest cases we may study. Although sticking pr
abilities distinct from 0 or 1 are expected to be obtained
many kinds of real experiments, these six groups repre
an appropriate starting point for our study and allow for
first approach to the different underlying aggregation mec
nisms.

The obtained results are summarized in Fig. 4. There,
relative rate constantk11

rel5k11/k11
Br is plotted as a function of

f for the six groups of sticking probabilities~square sym-
bols!. For group I,k11

rel increases monotonically from 0 to 1
On the contrary, for group III a monotonic decrease is o
served. For group II the initial aggregation rate goes from
DLCA value atf5$0,1% to its minimum value atf50.5,
wherek11

rel50.708. For group IV, a monotonic decay ofk11
rel

from the DLCA limit to 0 is also observed, just like th
behavior obtained for group III. The decrease, however
faster since aggregation for covered-bare patches is for
den (a250). For group VI, the initial aggregation rat
grows from 0 to the DLCA value, although the increase
slower than the observed for group I~also due to the fact of
having a250). Finally, in group V, coagulation is com
pletely forbidden forf50 and f51, whereas the initial
aggregation rate reaches its maximum valuek11

rel50.708 at
f50.5.

It should be noted that, as expected, the simulation res
show some symmetries among them. Indeed, groups III
VI turn into groups I and IV, respectively, by replacingf by
(12f). Also the curves corresponding to groups II and
are symmetric with respect tof50.5.

Figure 4 also shows the theoretical predictions given
Eqs.~7! and~8! ~dashed and solid lines, respectively!. As can
be observed, Eq.~7! underestimates the simulation results
all cases. This was an expected result since this model d
not consider the possibility of several consecutive collisio
per encounter that enhance aggregation. However, when
correction for multiple collisions is included in the kern
@Eq. ~8!#, the obtained theoretical curves by far overestim
the simulated data, i.e., particles are predicted to aggre
too fast.

Now, the following question arises from these observ
tions: Why is expression~8! not capable to predict the simu
lation data? The problem is that, even though the effec

is

TABLE I. Sticking probabilities for the six groups considere
for the simulations.

I II III IV V VI

a1 0 1 1 1 0 0
a2 1 0 1 0 1 0
a3 1 1 0 0 0 1
4-4
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FIG. 4. The relative rate constantk11
rel

5k11/k11
Br as a function of the degree of surfac

coveragef obtained from the simulations for th
six groups shown in Table I~square symbols!.
The dashed and solid lines are the theoretical p
dictions of Eqs.~7! and ~8!, respectively.
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multiple collisions is considered, the model on which Eq.~8!
is based assumes all consecutive collisions of a single
counter to be independent; that is, it takes the sticking pr
abilities to beP0 for all types of collisions@see Eq.~6!#.
However, it is clear that after a first collision, particles a
oriented in a particular direction such that the effective sti
ing probability for the subsequent collisions will be, in ge
eral, different fromP0. In other words, after a monome
monomer collision of certain type, there is a larg
probability that the subsequent collisions turn to be of
same type. Hence, the previous model needs to be exte
in order to account for the fact that the sticking probabilit
are conditioned to the preceding type of collision. This w
be done in the following section.

IV. THE PROPOSED MODEL AND ITS DISCUSSION

In order to achieve a good theoretical description of
simulation results, it is necessary to consider that the g
metrical probabilities are conditioned to the previous co
sion type. For the purpose of simplifying the mathemati
expressions, the notation introduced in Sec. II is employ
which identifies the bare-bare, bare-covered, and cove
covered collisions through the subindexes 1, 2, and 3,
spectively. In the same way, we definePmn as the conditional
geometrical probability for a collision of typen occurring
after a collision of typem for a given pair of particles.
Hence,P12 represents the geometrical probability for a p
of particles to produce a bare-covered collision after a ba
bare collision. Notwithstanding, the geometrical probabilit
01140
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are not conditioned for the first collision of any encount
They are noted asP0n for a n-type collision. Due to the
normalization of the geometrical probabilities, the values
Pmn andP0n are related by

(
n51

3

Pmn51 ; m51,2,3, (
n51

3

P0n51. ~11!

Since for a first collision of an encounter the patches of b
monomers are randomly oriented, we have

P01~f!5~12f!2,

P02~f!52f~12f!, ~12!

P03~f!5f2.

It should by mentioned that thef dependence of the geo
metrical probability matrix$Pmn(f)%m,n5123 is unknowna
priori and some realistic model is required. By the mome
however, we will develop the kinetic model, assuming th
these quantities are already known. At the end of this sect
we will return to this point in order to attempt for a reaso
able approximation for this matrix.

In addition to the geometrical probabilities, the dime
formation rate constant also depends on the sticking pr
abilities a1 , a2, anda3. Moreover, the probability for two
monomers to collide again (Pc), the probability for two
monomers to stop colliding and diffuse away (12Pc), the
average time between two consecutive collisions (tc), and
4-5
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the average diffusion time between two consecutive enco
ters (tdi f) must also be involved in thek11 expression.

The procedure for calculatingk11 begins with the follow-
ing identity:

k115
V

^t&
, ~13!

whereV is the volume of the whole system and^t& is the
average lifetime of monomers@19,20#. If the sticking prob-
abilities for the different types of collisions are the unit
a15a25a351, this lifetime becomes the average diffusio
time, and the aggregation is described by the DLCA regi
and the Brownian kernel

k11
Br5

V

tdi f
. ~14!

The procedure for determining the average time^t& consists
of considering all possible event times weighted with th
corresponding probabilities. As an example, let us cons
the following event: ‘‘A pair of monomers diffuse, meet, an
collide two times, being both collisions of type 1. Afte
wards, the monomers diffuse away and one of them colli
with a third monomer twice, being the first collision of typ
3 and the second of type 2. During the last collision t
monomers aggregate and form a dimer.’’ The average t
involved in this event istev52tc12tdi f and the correspond
ing probability for it is Pev5P01(12a1)PcP11(12a1)(1
2Pc)P03(12a3)PcP32a2. Figure 5 shows a tree diagram
for the possible ways that this kind of aggregation proc
may follow considering up to three collisions. Defining th
effective sticking probabilitiesP0, P1, P2, andP3 as

Pn~f!5a1Pn11a2Pn21a3Pn3 , n50,1,2,3, ~15!

the average monomer lifetime may be expressed by the
lowing expansion:

^t&[(
ev

Pevtev

5tdi f P
01~ tdi f1tc!Pc(

n51

3

P0n~12an!Pn12tdi f

3~12Pc! (
n51

3

P0n~12an!P01~ tdi f12tc!

3~Pc!
2 (

n,m51

3

P0n~12an!Pnm~12am!Pm

1~2tdi f1tc!Pc~12Pc! (
n,m51

3

P0n~12an!

3@Pnm~12am!P01P0m~12am!Pm#13tdi f~12Pc!
2

3 (
n,m51

3

P0n~12an!P0m~12am!P0. ~16!

For the further analysis, it is convenient to group the g
metrical and the equivalent probabilities and express them
the following matrix forms:
01140
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PW 5~P1,P2,P3!, ~17!

PW 05~P0,P0,P0!,

QW 05~Q01,Q02,Q03!,

A5S Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

D ,

A 05S Q01 Q02 Q03

Q01 Q02 Q03

Q01 Q02 Q03

D ,

where Q0n(f)[P0n(f)(12an) and Qmn(f)[Pmn(f)(1
2an). Both, Q0n andQmn contain all the mathematical de
pendence on the sticking probabilities and on the degre
coverage.

In terms of the above defined matrices, the average t
turns

FIG. 5. Tree diagram for the possible ways that an aggrega
process may follow considering up to three collisions. The cor
sponding probabilities and the involved average times are includ
The average lifetimêt& is the sum of all event times weighted b
their corresponding probabilities.
4-6
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^t&5tdi f P
01~ tdi f1tc!PcQW

0
•PW 12tdi f~12Pc!QW

0
•PW 0

1~ tdi f12tc!~Pc!
2QW 0

•A•PW 1~2tdi f1tc!Pc~12Pc!

3@QW 0
•A•PW 01QW 0

•A 0
•PW #13tdi f~12Pc!

2QW 0
•A 0

•PW 0

1••• . ~18!

However, instead of̂t& it is convenient to calculatêext&.
Hence,

^ext&[(
ev

Pevextev

5extdi fP01~extdi fextc!PcQW
0
•PW 1e2xtdi f~12Pc!QW

0
•PW 0

1~extdi fe2xtc!~Pc!
2QW 0

•A•PW

1~e2xtdi fextc!Pc~12Pc!@QW 0
•A•PW 01QW 0

•A 0
•PW #

1e3xtdi f~12Pc!
2QW 0

•A 0
•PW 01••• . ~19!

The last sum may be written in the following form:

^ext&5extdi fP01extdi fQW 0
•$I1@PcAextc1~12Pc!A 0extdi f#

1@PcAextc1~12Pc!A 0extdi f#21•••%•@Pce
xtcPW

1~12Pc!e
xtdi fPW 0#, ~20!

whereI is the 333 identity matrix. We define the matrixH
as

H~x![ (
n50

`

@PcAextc1~12Pc!A 0extdi f#n

5@I2PcAextc2~12Pc!A 0extdi f#21 . ~21!

Here,U 21 represents the inverse matrix ofU. Using Eq.~21!
in Eq. ~20!, we finally obtain the following expression tha
contains the contributions for all possible events

^ext&5extdi f$P01QW 0
•H~x!•@Pce

xtcPW 1~12Pc!e
xtdi fPW 0#%.

~22!

The exact mathematical expression for the average mo
mer lifetime may be obtained from the above equation
means of the relationship

^t&5S ]^ext&
]x D

x50

. ~23!

It becomes

^t&5tdi f P
01QW 0

•S dH
dx D

x50

•@PcPW 1~12Pc!PW
0#

1QW 0
•H~0!•@~ tdi f1tc!PcPW 12tdi f~12Pc!PW

0#.

~24!
01140
o-
y

The average time between two consecutive monom
monomer collisions,tc , is much shorter than the averag
diffusion time. In fact, for the simulation conditions given
Sec. III we obtainedtc /tdi f53.9631023. Hence, we may
safely assumetc'0 in order to simplify Eq.~24!. By doing
so, the kinetic rate constantk11 may be obtained by only
replacing this average lifetime on Eqs.~13! and ~14! while
considering expressions~17! and~21!. Its final explicit form
is given by

k11

k11
Br

512~12Pc!
BU1CUPc1DU~Pc!

2

12CDPc2DD~Pc!
22ED~Pc!

3
,

~25!

where

BU5Q011Q021Q03, ~26!

CU5Q01~Q121Q132Q222Q33!

1Q02~Q211Q232Q112Q33!

1Q03~Q311Q322Q112Q22! ,

DU5Q01~Q12Q231Q13Q321Q22Q33!

2Q01~Q12Q331Q13Q221Q23Q32!

1Q02~Q23Q311Q21Q131Q11Q33!

2Q02~Q21Q331Q23Q111Q13Q31!

1Q03~Q31Q121Q32Q211Q11Q22!

2Q03~Q31Q221Q32Q111Q12Q21!,

CD5Q111Q221Q33,

DD5Q12Q211Q13Q311Q23Q32

2~Q11Q221Q11Q331Q22Q33!,

ED5detA.

Note that this expression has the formk11/k11
Br512D(f),

whereD(f) is a positive quantity which represents the co
rection to the Brownian kernel due to noneffective collision
The above expression gives us the dimer-formation rate c
stant whatever the values of the sticking probabilities are,
the three possible types of collisions and for all possi
degrees of surface coverage,k115k11(a1 ,a2 ,a3 ,f). There-
fore, it completely describes the initial stages of the agg
gating system. Moreover, Eq.~25! has a general validity, i.e.
it does not depend on the way in which the surface cover
is distributed on the particle surface. In other words, it can
applied when the surface coverage is concentrated in a si
circular spot or even when it is scattered over the surfac
several smaller spots. The only difference between these
cases lies on the expressions for the conditional geomet
probabilities,Pmn .

The general form, given by Eq.~25!, may be simplified
when some specific situations are considered. In the follo
ing section, we discuss the simplest ones.
4-7
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A. Particular cases

~1! All types of collisions have the same sticking pro
ability: a15a25a35a. Then, considering the normaliza
tion condition @Eq. ~11!# we have P05P15P25P35a,
Q0n5P0n(12a) and Qmn5Pmn(12a). Using these rela-
tions in Eqs.~25! and ~26! we obtain

k11

k11
Br

5
a

12~12a!Pc
. ~27!

Since all types of collisions have the same sticking proba
ity, the aggregation rate does not depend on the geomet
probabilities and on the degree of coverage. Therefore,
dimer-formation rate constant becomes simplified to
original expression for RLCA withP5a @see Eq.~4! for i
5 j 51].

~2! The geometrical probability for all types of collision
is always at random and it does not depend on the prev
one. In this casePmn5P0n andA5A0. This leads to

k11

k11
Br

5
P0

12~12P0!Pc

, ~28!
e

ar

on
sl
or
ti
tic

n

nt
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where P05a1P011a2P021a3P03. Again, the classical
RLCA form is obtained having an effective sticking pro
ability P5P0 @see Eq.~8!#.

~3! Aggregation is forbidden for collisions of typen and it
is always accepted for the other types:am512dmn . Now,
Q0m5P0mdmn and Qrm5Prmdmn and, usingk11/k11

Br51
2D, one obtains for the correctionD,

Da150
a2 ,a351

5~12Pc!
P01

12PcP11
,

Da250
a1 ,a351

5~12Pc!
P02

12PcP22
, ~29!

Da350
a1 ,a251

5~12Pc!
P03

12PcP33
.

~4! Coagulation is always accepted for collisions of typen
and it is forbidden for the other types:am5dmn . In this case,
Q0m5P0m(12dmn) andQrm5Prm(12dmn) and theD ex-
pression is given by
Da151
a2 ,a350

5~12Pc!
P02@12Pc~P332P23!#1P03@12Pc~P222P32!#

~P221P33!Pc1~P22P332P23P32!~Pc!
2

,

Da251
a1 ,a350

5~12Pc!
P01@12Pc~P332P13!#1P03@12Pc~P112P31!#

12~P111P33!Pc1~P11P332P13P31!~Pc!
2

,

Da351
a1 ,a250

5~12Pc!
P01@12Pc~P222P12!#1P02@12Pc~P112P21!#

12~P111P22!Pc1~P11P222P12P21!~Pc!
2

. ~30!
on-

e-

re-
t

n-
Note thatD depends on the degree of surface coveragf
through the geometrical probabilitiesPmn in expressions
~28!–~30!.

B. The geometrical probabilitiesPmn

As mentioned before, the geometrical probabilities
well described by expression~12! for the first collision of
any encounter. For the subsequent consecutive collisi
however, the situation is not as simple. As was previou
shown, to assume all geometrical probabilities to be hist
independent leads to an overestimation of the aggrega
rate. Hence, it becomes a necessity to account for the par
orientation during the previous collision.

The nine conditional geometrical probabilities are co
nected among them through the normalization condition@Eq.
~11!#. Hence, only six probabilities are really independe
Furthermore, there exist the following symmetries:
e

s,
y
y
on
le

-

.

P11~f!5P33~12f!,

P22~f!5P22~12f!,

P13~f!5P31~12f!, ~31!

P12~f!5P32~12f!,

P21~f!5P23~12f!.

Consequently, we have to obtain an expression for the c
ditional geometrical probabilities,Pmn , that is compatible
with the normalization condition and with the symmetry r
lationships@expressions~11! and ~31!#.

For the sake of simplicity, we denotefc5f and fb
5(12f) as the fractions of covered and bare surface,
spectively, such thatfc1fb51. Let us suppose that the firs
collision between a pair of particles is of type 3, i.e., it i
volves a covered-covered contact@see Fig. 6~a!#. Since the
4-8



ca

e
u

bil

ve

a
le

e-
ol

cles
ion
al

di-

a

lli-
the
ri-

u-
ot

of
ve

by

lso
the

nd

a

p
d

ion

MODELING THE AGGREGATION OF PARTIALLY . . . PHYSICAL REVIEW E68, 011404 ~2003!
first collision occurs at random orientation, the geometri
probabilities are given byP015fbfb5(12f)2, P02
52fbfc52f(12f), and P035fcfc5f2. Afterwards,
both particles are oriented in a particular direction and th
can explore only a relative small part of their respective s
faces. Consequently, the conditional geometrical proba
ties P31, P32, andP33 will, in general, differ from the prod-
uct of the fraction of covered and bare surfaces,fc andfb ,
respectively.

It seems convenient to define an effective surface co
agefc85 f (fc)5 f (f) andfb8512fc8512 f (f) such that
the former product expressions remain valid. Here,fc8 (fb8)
represents the value of the localizedfc (fb) around the
contact point. In other words, we treat the second collision
if it had occurred between two randomly oriented partic
with a renormalizedeffective surface coverage,fb8 andfc8 .
Hence, P315fb8fb85@12 f (f)#2, P3252fb8fc852 f (f)@1
2 f (f)#, andP335fc8fc85 f (f)2. These concepts are sch
matically represented in Fig. 6 for all possible types of c

FIG. 6. Schematic view of the three possible situations that m
appear as a consequence of a first collision. Situation~a! is obtained
after the first collision of type 3,~b! is the result of a collision of
type 1, and~c! is that of type 2. In all cases,fc5f and fb5(1
2f) denote the fractions of covered and uncovered surface, res
tively. Functionf (fc) @ f (fb)# represents the value of the localize
fc @fb# around the contact point. That is, functionf gives us the
probability of finding a given surface patch again after a collis
on this patch~see text!.
01140
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lisions. It also shows that the surface spot where the parti
collided the first time looks larger in the subsequent collis
~see arrows!. The general expressions for the condition
geometrical probabilities read as follows:

P115fb8fb85 f ~12f!2,

P1252fb8~12fb8!52 f ~12f!@12 f ~12f!#,

P135~12fb8!~12fb8!5@12 f ~12f!#2,

P215~12fc8!fb85@12 f ~f!# f ~12f!,

P225fc8fb81@12fc8#@12fb8#

5 f ~f! f ~12f!1@12 f ~f!#@12 f ~12f!#, ~32!

P235fc8~12fb8!5 f ~f!@12 f ~12f!#,

P315~12fc8!~12fc8!5@12 f ~f!#2,

P3252fc8~12fc8!52 f ~f!@12 f ~f!#,

P335fc8fc85 f ~f!2.

The above expressions verify both the normalization con
tion @Eq. ~11!# and the symmetry relationships@Eq. ~31!# in a
natural way. Sincef represents the probability of finding
covered surface part for a first collision,f (f) denotes the
probability for finding a covered surface patch after a co
sion on the covered part. It should be noted that only
function f (f) is necessary in order to know all the geomet
cal probabilities. The explicit form of functionf will be de-
termined by comparing the theoretical predictions with sim
lation results. Since the geometrical probabilities do n
depend on the sticking probabilitiesa1 , a2, anda3, we can
use the simplest simulation conditions for deducingf (f).

C. Discussion

The relative kinetic rate constants, obtained by means
simulations for the six groups mentioned in Table I, ha
been fitted theoretically usingk11

rel512D. Groups I, II, and
III correspond to the particular case~3!, specifically to the
three equations shown in Eqs.~29!, respectively. Analo-
gously, groups IV, V, and VI are theoretically described
the particular case~4! through Eqs.~30!.

In these expressions, the sticking probabilitiesa1 , a2,
and a3 together with the degree of surface coveragef are
input parameters given by the simulation conditions. A
Pc50.8375 is kept constant for all cases. Consequently,
only free parameter is the unknown functionf (f). There-
fore, the following empiric expression is proposed forf (f):

f ~f!5fm24nf(12f). ~33!

Here,m andn are two fitting parameters that do not depe
on f. On the one hand,m2n controls the value ofk11

rel at

y

ec-
4-9
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FIG. 7. The same simulatedk11
rel5k11/k11

Br

data shown in Fig. 4~square symbols! are com-
pared to the theoretical predictions obtained
using the kinetic model given by Eq.~25! ~solid
lines!. The curves were obtained form50.3558
andn50.2438.
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f50.5, whereasm1n determines the shape of the cur
k11

rel5k11
rel(f). For example, the height of the maximum

f50.5 and the width of the curve described for group V~see
Fig. 4! are independently controlled bym2n and m1n,
respectively.

Both m andn were determined by fittingk11
rel(f) only for

group V. The best fit is obtained form50.355860.0157 and
n50.243860.0210. Then, these values are kept fixed for
other groups. The obtained theoretical curves~solid lines! are
shown together with the simulated data~square symbols! in
Fig. 7. As can be seen, the kinetic model reproduces
simulation results very satisfactorily for all groups and for
degrees of surface coverage.

Figure 8 depicts functionsf (f) ~solid line! andf ~dashed
line!. As observed,f (f)>f for all f values. Sincef rep-
resents the probability for finding a surface patch at the fi
collision andf (f) is the same probability after a given co
lision on the covered part of the particle, this result prov
that the subsequent collisions have a higher probability
occur at the same configuration than the previous one.

It should be remembered that our simulations were p
formed without considering the particle rotational Browni
motion. This may lead to an overestimation off (f), since
the correlation between the orientations of the particles
first collision with the orientations of the consecutive on
would, in principle, decrease. Nevertheless, we expect on
slight change off (f) due to the rotational contribution.

Since the six groups of simulations were restricted to
particular cases~3! and ~4!, it would also be desirable to
01140
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e

compare the simulation results with the theoretical pred
tions given by the general expressions~25! and ~26!, where
thea values are not necessarily fixed to 0 or 1. Hence, a t
number of 18 simulations were performed for different no
trivial values ofa1 , a2, anda3 and takingf50.3,0.5, and
0.8 ~see Table II!. Again, the theoretically obtainedk11

rel val-
ues match the simulated data quite satisfactorily. Note
for all cases, the relative error is lower than 2%.

FIG. 8. f (f) ~solid line! andf ~dashed line! plotted as a func-
tion of f. The fact thatf (f)>f means that subsequent collision
have a higher probability to occur in the same configuration as
previous one.
4-10
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MODELING THE AGGREGATION OF PARTIALLY . . . PHYSICAL REVIEW E68, 011404 ~2003!
Finally, some curves calculated by using general exp
sion ~25! are shown for several values of the sticking pro
abilities in Fig. 9.

Since the geometrical probabilitiesPmn and the sticking
probabilitiesan are totally independent, the constant para
etersm and n do not change withan . However,m and n
characterize the geometrical aspects of the particle collis
and, therefore, they depend on the distribution of the surf
coverage. Indeed, the valuesm5m0[0.3558 andn5n0
[0.2438 correspond to simulations performed by assum
a spotlike surface coverage. In contrast, for a homogeneo
distributed surface coverage, the shorttime kinetics is
scribed by the classical RLCA regime@Eq. ~8!# and, conse-
quently, the geometrical probabilities are not conditionaliz
to the previous collision:Pmn5P0n . Comparing expression
~12! and ~32! we obtainm51 andn50 for this particular
case. When the coverage is distributed forming a given n
ber of patches, values ranging in the intervalsm5@m0,1# and
n5@0,n0# are expected. Moreover,m is an increasing func-
tion of the homogeneity of the spot spreading, whereasn is a
decreasing one. Consequently,m andn characterize the su
perficial homogeneity.

The previous model may, hypothetically, be extended
describing the moderate and long aggregation stages.

TABLE II. Comparison between the theoretical and simula
rate constants for different sets of sticking probabilities.

a f50.3 f50.5 f50.8
a1 a2 a3 k11

relusm k11
relu th k11

relusm k11
relu th k11

relusm k11
relu th

0.05 0.2 0.8 0.497 0.488 0.646 0.644 0.859 0.8
0.1 0.05 0.05 0.328 0.334 0.283 0.288 0.250 0.2
0.3 0.7 0.05 0.794 0.808 0.771 0.771 0.584 0.5
0.5 0.1 0.3 0.695 0.707 0.633 0.635 0.656 0.6
0.6 0.3 0.9 0.841 0.849 0.857 0.848 0.912 0.9
0.8 0.7 0.2 0.926 0.928 0.866 0.875 0.743 0.7
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may be formally achieved by considering a size-depend
free surface coveragef i and by replacingPc→(Pc) i j . How-
ever, this would be a very difficult, if not impossible, task b
the following reasons. First, it is not clear whether the co
ditional geometrical probabilitiesPnm could be written in
terms of a single functionf (f). Second, and assuming th
this single function exists, it would depend on the cluster s
and on the way that particles associate~a dimer that is
formed by bounding the covered patches of its constitut
particles would show a small free degree of coverage,
deed!. This clearly indicates that the aggregation regime w
also affect the spot distribution on the free clusters surfa
and hence, functionf will also depend on the sticking prob
abilities an : f 5 f i(f i ,a1 ,a2 ,a3).

V. CONCLUSIONS

A model for describing the initial stages of the aggreg
tion of spherical partially covered particles has been p
posed. The motivation for this study is founded on the la
of an acceptable kinetic model for this kind of aggregati
system. In fact, two previously proposed models were co
pared with the data obtained by means of computer sim
tions. In both cases, the results showed a clear mism
between theory and simulation.

The model is based on the calculation of the avera
monomer lifetime, which is a function of the fraction of su
face coverage, the sticking probabilities for each type of p
sible contacts, and the conditional geometrical probabilit
for a given type of contact. This concepts lead to the defi
tion of a function that quantifies the probability for two co
liding particles to collide again on the same surface patch
one of the involved particles after a noneffective collision
any type. This function of the degree of surface covera
was then determined by computer simulations.

Unlike the initially tested models, the proposed mod
ral
FIG. 9. Some curves calculated using gene
expression~25! are shown for the following sets
of fixed sticking probabilities:~a! a250.3 and
a351, ~b! a250.3 anda350, ~c! a150.2, and
a350.2, and~d! a150.2 anda350.4.
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leads to an accurate description of the initial kinetics
colloidal systems formed by partially covered spherical p
ticles. This clearly demonstrates the importance of consi
ing conditional geometrical probabilities for a correct d
scription of the different encounters taking place in the
kinds of aggregation processes.
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